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Abstract

Soybean [Glycin max (L.) Merr.] plants grown 
under five management strategies differed 
significantly in their geometric structures, and 
were classified with 75 to 100% correct 
classification, based on differences in their fractal 
dimension (Do), midday differential canopy 
temperature (dT), and canopy light penetration 
[Log(I/Io)]. Single soybean plants grown under a 
conventional system using moldboard tillage  
developed complex geometric structures, with 
significantly larger Do (1.477) values and grain 
yield (11.2 g per plant) as compared to plants 
grown under an organic system with strip tillage 
(Do =1.358, and grain yield = 2.32 g per plant). 
Across management strategies, Do of single plants 
was a function of stem perimeter, circularity, and 
volume, and plant dry weight; whereas grain yield 
m-2 was a function of Do, plant dry weight and 
volume, and stem circularity. Knowledge of how 
plants respond to single and multiple management 
strategies will help agronomists develop better 
predictive models and will help farmers refine 
management practices to optimize yield.  

 
Introduction
 

Plant size and architecture are important factors 
in determining crop productivity [1]; however, 
researchers are faced with the problem of 
developing reliable models for plant geometric 
structure and its relationship to yield and 
productivity, especially for plants with complex 
structures such as soybean [2, 3]. One approach to 
solving this problem is to use fractal analysis to 
provide new avenues of understanding the 
functional implications of the branching patterns in 

relation to optimum space exploration by plants 
[1]. The fractal dimension (Do) is considered [2] 
an effective tool for quantifying plant structure, 
measuring the structural response to cultural 
practices and modeling plant canopies.  

The reproductive period is most sensitive to 
altered source strength and crop growth rate since 
it is the time during which important yield 
components are formed [4].  Changes in fractal 
dimension of several crops (e.g., corn and soybean) 
were found to be highly significant over time [2] 
reflecting the level of complexity in skeletal 
structure of single plants as the growth stages 
advanced. Several methods were used to quantify 
the relationships between soybean growth and 
development using growth analyses; however, 
limited information exists on the response of 
soybean’s fractal dimension to management 
strategies. The objectives of this 2-yr study were to 
quantify the impact of management strategies on 
soybean’s structural dimensions and Do during the 
reproductive growth stage, and to identify 
predictors of grain yield (gm-2). 
 
Materials and methods 

Digital imagery [5] and analysis procedures [2, 
6] were used to capture, measure, and statistically 
analyze several morphological traits of individual 
soybean plants grown under five management 
strategies, i.e., combinations of conventional (C) or 
organic (O) cropping system, conventional (C) or 
strip (S) tillage, recommended fertilizer rate (Y) 
and 2- or 4-yr crop rotation (Fig.1); for example, 
CCY4 is the management strategy with 
conventional cropping system (C), conventional 
tillage (C), with N fertilizer based on soil analysis 
(Y) and 4-yr crop rotation.  Light interception by 
plant canopy [log(I/Io)] and midday differential 
canopy temperature (dT) were estimated as 
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described by Jaradat et al. [7]. The fractal analysis 
procedure employed the box count concept as 
outlined by Foroutan-pour et al. [2], where the 
fractal dimension (Do) is constrained to be in the 
range of 1.0 � Do � 2.0. A value of 1.0 indicates 
that the image is completely differentiable and that 
of 2.0 indicates that the image is irregular. Yield 
components (listed in Fig. 1) were measured on the 
same plants subjected to fractal dimension analysis 
and were used in subsequent statistical analyses. 

 
The principal components (PC) option in the 

Nonlinear Iterative Partial Least Squares module 
and canonical discriminant (CD) analyses were 
used to analyze the standardized structural 
dimensions of individual soybean plants. Linear 
combinations of the original variables (i.e., leaf 
and stem structural dimension, in addition to 
Log(I/Io), Do*LAI [2], and dT) that account for as 
much of total variation in the data set as possible 
were constructed. Canonical discriminant analysis 
was used to find the dimensions along which plants 
grown under different management strategies differ 
and to find classification functions to predict group 
membership on the first (R1) and the second (R2) 
canonical discriminant functions. The CD module 
was used to assess the variation among plants 
produced under two or more management 
strategies relative to the average variation found 
within all plants regardless of management 
strategies [8]. 

 
The impact of plant structural dimensions on Do 

and grain yield gm-2 was studied using the 
regression option in artificial neural networks 
(ANNs), then the models were subjected to 
sensitivity analysis to evaluate the relative 
importance of each variable in explaining Do or 
grain yield gm-2. In this analysis, each predictor 
was treated in turn as if it were not available in the 
ANN model and the average value of that predictor 
was used. A sensitivity ratio was calculated by 
dividing the total ANN error when the predictor 
was treated as “not available” by the total ANN 
error when the actual value of the predictor was 
used. If the ratio is >1.0, then the predictor made 
an important contribution to Do or grain yield gm-

2. The higher the ratio, the more important the 
predictor is [8]. Additionally, we calculated the 
correlation coefficient (r) and a ratio between the 
standard deviation (SD-ratio) of original and model 
data; higher r values and lower SD-ratio values are 
indicators of better model performance [8]. 
Sensitivity analysis was performed by generating 
response curves for each predictor to study its 

relationship with Do and with seed yield (gm-2), 
while all other predictors were set at their mean 
value. 
 
Results

Principal components regression 

Slightly more than 50% of total variation in the 
whole data set was explained by the first two 
principal components (PCs; Fig. 1). Distinct 
separation between plants grown under organic and 
conventional systems was achieved on the basis of 
single plant characteristics, most of which were 
positively associated with conventional cropping 
system, conventional tillage and fertilizer 
application. Thousand-seed weight was the only 
variable associated with organic cropping system, 
strip tillage and no fertilizer treatment. Leaf area 
loaded on the third PC and accounted for 
additional 10% of total variance (data not 
presented). Grain yield m-2 was positively and 
closely associated with the fractal dimension, pods 
m-2, and stem circularity, and to a lesser extent 
with the remaining plant structural dimensions on 
PC1 which explained 33% of total variation. 
 

 
 
Fig. 1. Joint plot of six components of management 
strategies, ten soybean characteristics and the 
fractal dimension on the first two principal 
components in PC analysis. 
 

   A cumulative variance of 43% was explained 
by all independent variables in the PC regression 
(Fig. 2). Larger Do values, when multiplied by leaf 
area index (LAI) [2], were positively associated 
with conventional cropping system and 
conventional tillage; whereas large values of dT 
and log(I/Io) (i.e., less light interception by plant 
canopy) were associated with organic cropping 
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system (Fig. 2). The large LAI*Do values were 
loaded positively on PC1 along with most stem and 
leaf characteristics; however, stem width, leaf 
width, leaf perimeter, and stem perimeter were 
more closely associated with LAI*Do than the 
remaining stem and leaf structural dimensions. 
 

 
 
Fig. 2. Mean separation and variance in grain yield 
per plant accounted for by differences among 
management strategies and soybean characteristics 
as predicted by the first two components in 
principal components regression. Means followed 
by the same letter do not differ significantly at the 
5% level of probability. 
 
A total of 51% of total variation in the dependent 
variables, accounted for by the first two PCs, 
explained 87% of total variation in grain yield per 
plant, which ranged from 2.32 (OSY4) to 11.2 g 
(CCY4) with significant differences among all 
management strategies. There were significant 
differences in grain yield per plant due to the 
tillage component, whether associated with 
conventional or organic systems, and due to crop 
rotation (2- vs. 4-yr) whether associated with 
conventional or strip tillage. Plants grown under 
CCY4 produced the largest grain yield (11.2 g), 
followed by CSY4 (9.82 g); whereas those grown 
under OCY4 and OSY4 produced the least (5.37 
and 2.32 g per plant, respectively). 
 
Discriminant analysis 

Discrimination among plant samples grown 
under five management strategies (Fig. 3) was 
clearly achieved using plant structural dimensions 
and three derived statistics (i.e., dT, Do and 
log(I/Io). Two canonical discriminant roots 
accounted for a total of 92% of total variation and 
discriminated among plant samples with 75.0 
(CSY4) to 100.0% (CCY2 and OSY4) correct 

classification. The first canonical root (R1) was 
dominated by leaf circularity (i.e., ratio of minor to 
major axes), leaf area, log(I/Io), Do and dT, 
accounted for the majority of variation (84%) and 
totally separated samples grown under organic 
system (i.e., OCY4 and OSY4, with 95.5 and 
100.0% correct classification, respectively) from 
those grown under conventional system (CCY2, 
CCY4 and CSY4, with 100.0, 83.3, and 75.0% 
correct classification, respectively).  
 

 
 
Fig.3. Canonical discriminant analyses and percent 
correct classification of soybean plants grown 
under five management strategies based on single 
plant structural dimensions, log(I/Io), Do and dT. 
 

Separation between the latter three groups along 
the second canonical root (R2), with 8% of total 
variation, ranged from 75 (CSY4) to 83.3% 
(CCY4). CAN2 was dominated by stem-related 
variables and there was clear overlap between 
plants grown under CCY4 and CSY4, on one hand, 
and those grown under CCY2. The three derived 
statistics (i.e., Do, dT and log(I/Io) were closely 
associated with leaf circularity and leaf area, 
whereas stem structural dimensions were 
independent. 

Prediction of Do

Calibration and validation regression models 
were developed to predict Do as a function of dT 
are presented in Table 1. Correlation coefficients (r 
values) between measured and predicted grain 
yield using Do as a predictor were non-significant 
during the first two growth stages (data not 
presented); however, r values increased steadily 
from 0.74 (RGS3) to 0.96 as the plants approached 
maturity (RGS6); the respective r-values for the 
validation models were smaller (0.65 to 0.94) 
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albeit significant (p<0.05); however, the validation 
models performed very poorly during the first two 
reproductive growth stages. The intercept and 
slope the regression models increased steadily as 
plants approached maturity, the intercept 
approaching zero and the slope approaching unity.  
 
Table 1. Calibration (C ) and validation (V) partial 
least squares (PLS) regression models predicting 
soybean plant fractal dimension (Do) as a function 
of midday differential canopy temperature (dT) at 
four reproductive growth stages (RGS3 – RGS6, a 
and b are intercept and slope of regression models, 
respectively; *, p<0.05). 
 

PLS regression model Growth 
stage C r V r 
RGS3 a  0.68 0.74* 0.78 0.65* 
 b  0.52  0.46  
RGS4 a  0.53 0.79* 0.58 0.74* 
 b  0.63  0.60  
RGS5 a  0.29 0.89* 0.34 0.86* 
 b  0.79  0.76  
RGS6 a  0.11 0.96* 0.14 0.94* 
 b  0.92  0.89  

Neural network and sensitivity analyses 
 
A Multi-Layer Perception Neural Network 

(MLPR-NN) with 9:9-13-7-1:1 layers was the best 
neural network to predict soybean fractal 
dimension (Do), and a General Regression Neural 
Network (GR-NN) with 13:13-43-2-1:1 neurons 
was the best to predict soybean grain yield gm-2 as 
a function of three plant traits and the fractal 
dimension (Do). The MLPR neural network 
identified four independent variables with 
significant contribution in predicting both Do and 
grain yield m2 (Table 2). Plant dry weight was an 
important variable in predicting Do and grain yield 
m-2. A much simpler multi-layer perception neural 
network, with 13 hidden layers, was capable of 
predicting Do as compared to the more complex 
general regression neural network, with 43 hidden 
layers, needed to predict grain yield gm-2. 
However, almost correlation coefficients were 
found between measured and modeled data for Do 
(0.87) and grain yield gm-2 (0.89) (Table 2).  

 The relationship between four predictors (Table 
2) and Do was quantified and a regression equation 
was developed to predict Do as a function of each 
predictor while holding each of the remaining 
predictors at its mean value. Plant dry weight, stem 
volume, stem circularity and stem perimeter (Fig. 

4) displayed different, albeit large and significant, 
effects on Do. The quadratic effect of stem volume 
was not significant. A plant dry weight of 6-7 g is 
capable of producing a maximum Do of 1.45-1.46; 
however, Do did not respond positively to any 
further increases in the plant dry weight beyond 
this level. 

 
Table 2. Statistics of the Multi-Layer Perception 
Neural Network (MLPR-NN) with 9:9-13-7-1:1 
layers predicting soybean fractal dimension (Do), 
and of the General Regression Neural Network 
(GR-NN) with 13:13-43-2-1:1 neurons predicting 
soybean grain yield gm-2 as a function of three 
plant traits and the fractal dimension (Do). 
 

Ratio and  
(rank) 

Test statistics Variable 

Do Grain 
yield,  
gm-2 

Do Grain 
yield, 
 gm-2 

Plant dry 
weight, g 

1.57(1) 1.6(2)   

Plants 
volume 

1.49 (2) 1.35 (3)   

Plant 
circularity 

1.35 (3) 1.35 (4)   

Plant 
perimeter 

1.14 (4)    

Do  1.73 (1)   
     
Mean  1.43 172 
S.D.  0.06 56.0 
S.D. 
Ratio 

 0.65 0.63 

r-value  0.87 0.89 
 
Plant dry weight was the most important variable 

in predicting Do, followed by plant volume, plant 
circularity and plant perimeter; whereas Do was 
the most important variable, followed by plant dry 
weight, plant volume and plant circularity, in 
predicting grain yield gm-2. The SD-ratios for Do 
(0.646) and for grain yield m-2 (0.632) were 
relatively similar.  
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Fig. 4. Sensitivity analyses of plant dry weight, 
stem volume, stem circularity and stem perimeter 
as predictors of fractal dimension (Do) of soybean 
plants. 
 
 
On the other hand, Do responded linearly to plant 
volume and, in a piecewise fashion, to stem 
circularity (i.e., ratio of minor to major axes, with a 

breakpoint at Do=1.424331) and stem perimeter 
(with a breakpoint at Do=1.4164. Similarly, a 
nonlinear regression equation was developed to 
predict grain yield (gm-2) as a function of each 
predictor (i.e., Do, plant dry weight, plant volume, 
and stem circularity, Table 2) while holding each 
of the remaining predictors at its mean value (Fig. 
5). Positive and significant relationships were 
found among grain yield and each predictor, and 
the nonlinear portion of the regression equations 
was significant except for Do.  

Discussion

Short growing seasons in the upper Midwestern 
USA present serious time limitations on crop 
growth, in which soybean crop needs to establish 
and maximize canopy coverage rapidly to exploit 
available light [3]. Crop plants have been shown to 
adjust their architectural traits (Table 2) in 
response to management practices [2] and plant 
architecture, as characterized by Do, has been 
shown to impact grain yield in many crops [1].  
 
   Different management practices created a range 
of microenvironments in which soybean plants 
developed different architectures, as reflected by 
their Do, dT and log(I/Io) values and on the large 
percentage of correct classification (75.0-100.0%). 
Further evidence on how grain yield responded to 
adjustments in plant architecture, which in turn 
responded to components of different management 
practices, is quantified in Fig. 1. The largest grain 
yield per plant (11.2 g) was positively associated 
with Do, conventional system, and conventional 
tillage, and was a result of maximum plant growth 
and development under the favorable conditions 
created by the CCY4 management strategy (Fig. 
3). 
 
   The PLS regression models, especially during 
RGS3 to RGS6 (Table 1), succeeded in  predicting 
Do as a function of midday differential canopy 
temperature (dT), the value of which  depends on 
air temperature, but will differ from it due to 
canopy characteristics, thermal characteristics and 
thermal conditions near the soil surface [10]. 
Reliability of the predictive equations (expressed 
as r-values) increased as the plants grew and 
changed the microenvironment within the canopy, 
and with time.
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Fig. 5. Sensitivity analyses of fractal dimension 
(Do), plant dry weight, plant volume, and stem 
circularity as predictors of grain yield gm-2 of 
soybean. 

The response curves generated by the ANN models 
provided valuable information about the 
relationships among grain yield m-2 and a set of 
predictors beyond the information provided by 
simple correlation and regression models [9]. We 

identified important Do and seed yield predictors 
using ANN models in an attempt to develop timely 
management practices that may help create 
optimum plant geometric structures (expressed as 
Do) capable of maximizing light interception and 
midday differential canopy temperature, and thus 
producing the largest grain yield. 
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